
GAMMA Gaussian Pulses 38
Shaped Pulses Gaussian Pulse Sections 4.1
4 Gaussian Pulses

4.1 Gaussian Pulse Sections

Introduction page 4-62
Available Acquire1D Functions- page 481
Covered Acquisition Theory page 481
Gaussian Pulse Propagators page 4-40
Gpulse_U page 4-42
Input/Output Functions page 485
Auxiliary Functions page 4-48
Description page 4-49
Gaussian Pulse Parameters page 4-62
Defining a Gaussian Pulse Directly page 4-63
Defining a Gaussian Interactively page 4-63
Defining a Gaussian Pulse in an External File page 4-63
Constructing a Gaussian Pulse Propagator page 4-64
Example: Gaussian Pulse Profile page 4-65
Example: Gaussian 90 Pulse page 4-65
Chapter Source Codes page 1-503

4.2 Gaussian Pulse Functions

Gaussian - Construction page 4-40
= - Assignment page 4-40
Gangle - Gaussian pulse angle on resonance page 4-43
GgamB1 - Gaussian pulse field strength page 4-43
Gtime - Gaussian pulse length page 4-44
GNvect - Normalized Gaussian vector page 4-44
Gvect - Scaled Gaussian vector page 4-45
GIntvec - Gaussian vector integral page 4-45
Ghistogram - Gaussian histogram page 4-46
ask_Gpulse - Get Gaussian pulse parameters page 4-46
read_Gpulse - Read Gaussian pulse parameters page 4-46

4.3 Gaussian Pulse Figures & Tables

Analog Gaussian Plot- page 4-49
Discrete Gaussian Plot- page 4-53
Gaussian Pulse Shape- page 4-54
Gaussian Shaped Pulse Equations- page 4-60
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 39
Shaped Pulses Gaussian Pulse Programs 4.4
4.4 Gaussian Pulse Programs

Gplot.cc Generate Plots of Gaussian Pulse Waveforms page -78
Ghistplot.cc Histogram Plots of Gaussian Pulse Waveforms page -79
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 40
Shaped Pulses Gaussian Pulse Programs 4.4

tion
will
l value
nera-

ation
ill

 value
nera-

ucts

uire1D.
4.5 Gaussian Pulse Propagators

4.5.1 Gaussian

Usage:

#include <P_Gaussian.h>
gen_op Gaussian(spin_system& sys, gen_op& H, String& Iso,

double td, double theta, double phi=0.0)
void Acquire1D(gen_op &Op, gen_op &H, double dt=0)
void Acquire1D(gen_op &Op, super_op &L, double dt=0)
void Acquire1D(const Acquire1D &ACQ1)

Description:

The function Acquire1D is used to create a 1-dimensional acquisition computational core.

1. Acquire1D() - Creates an “empty” NULL acquire1D. Can be later filled by an assignment.

2. Acquire1D(gen_op &Op, gen_op &H, double dt) - Called with the operator for which the expecta
values are desired (Op) and the static Hamiltonian (H) under which the system density operator
evolve, this function constructs an appropriate acquire1D for future computation use. The optiona
dt may be set for an incremental delay time. This produces an exponential Liouvillian for rapid ge
tion of time domain spectra.

3. Acquire1D(gen_op &Op, super_op &L, double dt) - Called with the operator for which the expect
values are desired (Op) and the system Liouvillian (L) under which the system density operator w
evolve, this function constructs an appropriate acquire1D for future computation use. The optional
dt may be set for an incremental delay time. This produces an exponential Liouvillian for rapid ge
tion of time domain spectra.

4. Acquire1D(const Acquire1D &ACQ1) - Called with another acquire1D quantity this function constr
an identical acquire1D to the input ACQ1.

Return Value:

Acquire1D returns no parameters. It is used strictly to create an acquire1D.

Examples:

See Also: =

4.5.2 =

Usage:

#include <P_Gaussian.h>
void acquire1D operator = (acquire1D &ACQ1)

Description:

The unary operator = (the assignment operator) allows for the setting of one acquire1D to another acq
If the acquire1D being assigned to exists it will be overwritten by the assigned acquire1D.
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 41
Shaped Pulses Gaussian Pulse Programs 4.4
Return Value:

None, the function is void

Examples:

See Also: acquire1D

4.5.3 Gpulse_Hs

Usage:

#include <P_Gaussian.h>
void Gpulse_Hs(gen_op* Hs, gen_op& Ho, gen_op& Fxy,

int N, double ang, double tp, double fact)

Description:

The function Gpulse_Hs generates a series of active Hamiltonians applicable to a Gaussian shaped pulse. The
Hamiltonians are defined only in the rotating frame of the rf-field of the pulse. The array of general operators
Hs is filled with N operators representing the Gaussian waveform. The waveform consists of N steps, is of
length tp (sec.), begins at intensity fact (decimal% of maximum), and will rotate magnetization on resonance
by angle ang (degrees). The operator Fxy sets the pulse phase and selectivity. The operator Ho is the isotropic
system Hamiltonian.

Return Value:

The function is void, it will fill operator array Hs.

Example:

#include <P_Gaussian.h>

Acquire1D ACQ1(det,L,sigmaeq); // Set up for 1D acquisition

See Also:

4.5.4 Gpulse_Us

Usage:

#include <P_Gaussian.h>
void Gpulse_Us(gen_op* Us, gen_op& Ho, gen_op& Fxy,

int N, double ang, double tp, double fact)

Description:

The function Gpulse_Us generates a series of propagators applicable to a Gaussian shaped pulse. The prop-
agators are defined only in the rotating frame of the rf-field of the pulse. The array of general operators Us is
filled with N propagators representing the Gaussian waveform. The waveform consists of N steps, is of length
tp (sec.), begins at intensity fact (decimal% of maximum), and will rotate magnetization on resonance by an-
gle ang (degrees). The operator Fxy sets the pulse phase and selectivity. The operator Ho is the isotropic sys-
tem Hamiltonian.
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 42
Shaped Pulses Gaussian Pulse Programs 4.4
Return Value:

The function is void, it will fill operator array Hs.

Example:

#include <P_Gaussian.h>

Acquire1D ACQ1(det,L,sigmaeq); // Set up for 1D acquisition

See Also:

4.5.5 Gpulse_U

Usage:

#include <P_Gaussian.h>
gen_op Gpulse_U(gen_op& Ho, gen_op& Fxy,

int N, double ang, double tp, double fact)

Description:

The function Gpulse_U generates a propagator which will evolve a spin system under a Gaussian shaped
pulse. The waveform consists of N steps, is of length tp (sec.), begins at intensity fact (decimal% of maxi-
mum), and will rotate magnetization on resonance by angle ang (degrees). The operator Fxy sets the pulse
phase and selectivity. The operator Ho is the isotropic system Hamiltonian.

Return Value:

The function a single propagator (operator).

Example:

#include <P_Gaussian.h>

Acquire1D ACQ1(det,L,sigmaeq); // Set up for 1D acquisition

See Also:
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 43
Shaped Pulses Gaussian Pulse Programs 4.4
4.6 Auxiliary Functions

4.6.1 Gangle

Usage:

#include <P_Gaussian.h>
double Gangle(double gamB1, double tau, int N, double fact=0.025)

Description:

The function Gangle returns the Gaussian shaped pulse rotation angle on resonance in degrees. The Gaussian
waveform is based on the input field strength gamB1in Hertz, the pulse length tau in seconds, the number of
steps N, and the decimal percent of maximum fact at the end points.

Return Value:

The function returns a double precision number.

Example:

#include <P_Gaussian.h>

double gamB1 = 50; // Set gamma*B1 to 50 Hz

int nstp = 1000; // Set number of steps to 500

double tp = 0.30; // Set the pulse length to 30 ms

cout << “\nPulse Angle: “ // Output the results of Gangle

<< Gangle(gamB1,tp,nstp) // (roughly 270 degrees in this case)

<< “ Degrees”;

See Also:

4.6.2 GgamB1

Usage:

#include <P_Gaussian.h>
double GgamB1 (double angle, double tau, int N, double fact=0.025)

Description:

The function GgamB1 returns the Gaussian shaped pulse rf-strength needed to attain an on-resonance rotation
angle of angle degrees. The Gaussian waveform is based on the rotation angle angle in degrees, the pulse
length tau in seconds, the number of steps N, and the decimal percent of maximum fact at the end points.

Return Value:

The function returns a double precision number.

Example:

#include <P_Gaussian.h>
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 44
Shaped Pulses Gaussian Pulse Programs 4.4
double tp = 0.01; // Set pulse length to 10 ms

int N = 1001; // Set number of steps to 1001

double ang = 270.; // Set the angle to 270 degrees

double fact = 0.025; // Set cutoff to 2.5% at endpoints

double GB1 = GgamB1(ang,tp,N,fact); // Get the needed field strength

cout << “\nSet Field to “ << GB1 << “ Hz”; // Output calculated field (~160Hz)

See Also:

4.6.3 Gtime

Usage:

#include <P_Gaussian.h>
double Gangle(double angle, double gamB1, int N, double fact=0.025)

Description:

The function Gtime returns the Gaussian shaped pulse length in seconds required to attain an on-resonance
rotation angle of angle degrees. The Gaussian waveform is based on the rotation angle angle in degrees, the
input field strength gamB1in Hertz, the number of steps N, and the decimal percent of maximum fact at the
end points.

in degrees.

Return Value:

The function returns a double precision number.

Example:

#include <P_Gaussian.h>

double angle = 270.; // Set pulse angle to 270 degrees

int nstp = 1001; // Set number of steps to 1001

double gamB1 = 50.; // Set the field strength to 50 Hz

cout << “\nPulse Length: “ // Output the results of Gtime

<< Gtime(ang,gamB1,nstp) // (roughly 32 ms in this case)

<< “ Seconds”;

See Also:

4.6.4 GNvect

Usage:

#include <P_Gaussian.h>
double Gangle(double gamB1, double tau, int N, double fact=0.025)

Description:

The function Gangle returns the Gaussian shaped pulse rotation angle on resonance in degrees.
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 45
Shaped Pulses Gaussian Pulse Programs 4.4
Return Value:

The function is void, it will alter the input data block.

Example:

#include <P_Gaussian.h>

See Also:

4.6.5 Gvect

Usage:

#include <P_Gaussian.h>
double Gangle(double gamB1, double tau, int N, double fact=0.025)

Description:

The function Gangle returns the Gaussian shaped pulse rotation angle on resonance in degrees.

Return Value:

The function is void, it will alter the input data block.

Example:

#include <P_Gaussian.h>

See Also:

4.6.6 GIntvec

Usage:

#include <P_Gaussian.h>
double Gangle(double gamB1, double tau, int N, double fact=0.025)

Description:

The function Gangle returns the Gaussian shaped pulse rotation angle on resonance in degrees.

Return Value:

The function is void, it will alter the input data block.

Example:

#include <P_Gaussian.h>

See Also:
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 46
Shaped Pulses Gaussian Pulse Programs 4.4
4.7 Input/Output Functions

4.7.1 Ghistogram

Usage:

#include <P_Gaussian.h>
double Gangle(double gamB1, double tau, int N, double fact=0.025)

Description:

The function Gangle returns the Gaussian shaped pulse rotation angle on resonance in degrees.

Return Value:

The function is void, it will alter the input data block.

Example:

#include <P_Gaussian.h>

See Also:

4.7.2 ask_Gpulse

Usage:

#include <P_Gaussian.h>
double Gangle(double gamB1, double tau, int N, double fact=0.025)

Description:

The function Gangle returns the Gaussian shaped pulse rotation angle on resonance in degrees.

Return Value:

The function is void, it will alter the input data block.

Example:

#include <P_Gaussian.h>

See Also:

4.7.3 read_Gpulse

Usage:

#include <P_Gaussian.h>
double Gangle(double gamB1, double tau, int N, double fact=0.025)

Description:

The function Gangle returns the Gaussian shaped pulse rotation angle on resonance in degrees.
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 47
Shaped Pulses Gaussian Pulse Programs 4.4
Return Value:

The function is void, it will alter the input data block.

Example:

#include <P_Gaussian.h>

See Also:

4.7.4 <<

Usage:

#include <P_Gaussian.h>
ostream& operator << (ostream& ostr, acquire1D& ACQ1)

Description:

The operator << adds the acquisition specified as an argument ACQ1 to the output stream ostr. The format
will as follows:

non-zero points out of # possible

Dwell time: # (if available)

A[i], B[i] pairs

Hilbert space basis.

Return Value:

None.

Example(s):

#include <P_Gaussian.h>

See Also:
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 48
Shaped Pulses Gaussian Pulse Programs 4.4
4.8 Auxiliary Functions

4.8.1 size

Usage:

#include <P_Gaussian.h>
int acquire1D::size()

Description:

The function size returns the current dimension over which the index p will sum in the generalized class
acquire1D acquisition equation

Return Value:

The function returns an integer.

Example:

#include <P_Gaussian.h>

See Also:

4.8.2 size

Usage:

#include <P_Gaussian.h>
int acquire1D::size()

Description:

The function size returns the current dimension over which the index p will sum in the generalized class
acquire1D acquisition equation

Return Value:

The function returns an integer.

Example:

#include <P_Gaussian.h>

See Also:

Op tk()〈 〉 Ap Bp[]k

p

size

∑=

Op tk()〈 〉 Ap Bp[]k

p

size

∑=
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 49
Shaped Pulses Gaussian Pulse Programs 4.4
4.9 Description

4.9.1 Introduction

The module P_Gaussian provides functions which pertain to Gaussian shaped pulses in NMR sim-
ulations. These functions either return propagators which evolve the density operator or they act
on the density operator directly.

4.9.2 Analog Mathematical Basis

The Gaussian function is formally given by

(19-1)

where is the standard deviation and relates the linewidth at half-height by the relationship

. (19-2)

The Gaussian function maximizes to 1 at and is zero at . A plot of this function
would be

Analog Gaussian Plot

Figure 19-3 A Gaussian function depicting the peak maximum at and the linewidth at half-

height. This function maximum is 1 and the end points tend to zero at . This plot was pro-
duced from the program Gplot.cc given at the end of this chapter.

The relationship between and is derived as follows.

G t() e
t t0–()– 2 2σ2⁄[]

=

σ

t1 2⁄ 8ln 2()σ 2.35482()σ= =

t to= t ∞±=

0.2

0.4

0.6

0.8

1

t1/2

t0 t1

t to=

t ∞±=

σ t1 2⁄

f t1()
f to()
----------- 0.5

1

exp t1 t0–()–
2

2σ2()⁄[]

exp t0 t0–()–
2

2σ2()⁄[]
---= =
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 50
Shaped Pulses Gaussian Pulse Programs 4.4

1 rath-
(19-3)

Because the Gaussian define above maximizes to a value of 1 whereas we can change its linewidth
by altering the standard deviation, the integrated area under the curve varies with . If desired, a
normalization factor may be placed in front of the Gaussian so that it’s integrated intensity is
er that its maximum height. This is done by multiplication by where N is given by

(19-4)

a value that can be obtained as follows.

1
2
--- exp

t1 t0–()2
–

2σ2
------------------------ exp

0.5t1 2⁄()2
–

2σ2
---------------------------= =

ln 0.5()
0.5t1 2⁄()2

–

2σ2
---------------------------= 2ln 2()

0.5t1 2⁄()2

σ2
------------------------=

1
2
---t1 2⁄ σ 2ln 2()=

t1 2⁄ 8ln 2()σ 2.35482()σ= =

σ

1 N⁄

N G t() td

0

∞

∫ 2πσ= =

N
2

exp
x x0–()2

–

2σ2
------------------------ x exp

y y0–()2
–

2σ2
------------------------ yd

0

∞

∫d

0

∞

∫ exp
r

2
–

2σ2
--------- r r θdd

0

2π

∫
0

∞

∫= =

2π exp
r

2
–

2σ2
--------- r rd

0

∞

∫ 2πσ2
e

u–
ud

0

∞

∫ 2πσ2
= = =
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 51
Shaped Pulses Gaussian Pulse Programs 4.4
4.9.3 Discrete Mathematical Basis

A computer representation of any waveform, such as the Gaussian function, must be done using
discrete mathematics. The waveform will be repersented by a specified number of points, N, and
the previous analog function can be adjusted to evaluate at each point according to

(19-5)

However, we will demand a few modifications of this formula to make it suitable for defining a
pulse shape in NMR. Keep in mind that a pulse programmer in a spectrometer is limited to the same
discrete mathematics. The applied pulse wave form is only a discrete approximation to the true
pulse function. We will tailor our discrete formula according to the following two conditions.

1.) The Gaussian maximum will be centered in the middle of the Gaussian points. Since the wave-
form will be applied at a specified time in a pulse sequence, we can move the center of the pulse

to any point in the sequence. For an array of N points, the center is given by1

(19-6)

and so our working equation becomes

(19-7)

In this formula i is a non-negative integer, the point (or step) increment. The units on sigma must
also be points but it need not be integer. Below is a plot of using and overlaid

is an analog Gaussian.

Analog vs. Discrete Gaussian Plot

2.)Unlike the analog Gaussian, here we would like to set the value of , or equivalently the Gaus-

1. This if or C indexing, the first point indexed as 0 and the last point as N-1. Not that there may not actually
be an evaluated point in the center. If N is even then the center will lie between two points of the discrete
waveform.

Gi e
i i0–()– 2 2σ2⁄[]

=

N 1–() 2⁄

Gi e
i N 1–() 2⁄–[]– 2 2σ2⁄[]

e
2i N 1–()–[]2 fact()ln() 2σ2⁄[]

= =

Gi N 33= σ 1.1=

0.2

0.4

0.6

0.8

1

(N-1)/20 N-1

σ

Scott Smith May 8, 1998

GAMMA Gaussian Pulses 52
Shaped Pulses Gaussian Pulse Programs 4.4
sian spread, such that the intensity at the first point is a specified percentage of the maximum. Re-
call that a true Gaussian only approaches zero at an infinite distance away from the maximum. One
would then need infinite time to attain a true Gaussian pulse shape, so we settle for shorter pulses
by just truncating the Gaussian at some specified minimum height (~1%).

Rather than set the Gaussian width in terms of a value1, a more appropriate choise would be to
just specifiy the end-point intensity relative the the function maximum. In building Gaussian
shaped pulses this is important because normally the initial Gaussian intensity is specified and
should not be set to zero. We must choose a cutoff value which indicates the initial and final inten-
sities of the discrete function based on a set percentage of the maximum intensity, , where

is the decimal form of a percent (e.g. 2% maximum is). We can see how this will af-

fect our discrete formula, or equivalently, what value of is required, by looking at either the first
(i=0) or last (i=N-1) point.

(19-8)

So that

(19-9)

where . Back solving this for the standard deviation produces

(19-10)

Putting this back into our original discrete Gaussian amplitude using

(19-11)

The discrete Gaussian equation is then

(19-12)

How the discrete function behaves is shown in the next figure.

1. That would allow for either most points to be zero by selecting a very small standard deviation, or for hav-
ing the defined Gaussian almost constant by selecting a very large standard deviation.

σ

fact fact

fact 0.02=

σ

fact e
i N 1–() 2⁄–[]– 2 2σ2⁄[]

i 0=
e

i N 1–() 2⁄–[]– 2 2σ2⁄[]
i N 1–=

= =

fact e
N 1–() 2⁄[]– 2 2σ2⁄

e
N 1–()– 2 8σ2⁄

= =

fact 0 1[,]∈

σ N 1–() 8 factln–⁄=

1 2σ2⁄ fact()ln– N 1–() 2⁄[]2⁄=

Gi e
fact()ln 2i N 1–()–[]2 N 1–()2⁄

=

Scott Smith May 8, 1998

GAMMA Gaussian Pulses 53
Shaped Pulses Gaussian Pulse Programs 4.4
Discrete Gaussian Plot

Figure 19-4 A discrete Gaussian function depicting the peak maximum at . In this case
the “linewidth” is set by the function intensity at the two endpoints, in decimal form percent of max-
imum peak height, fact.This plot was produced by program Gplot.cc given at the end of this chapter.

If we now check the Gaussian endpoints we find that

which is what we intended. Furthermore, the discrete Gaussian is symmetric, as can be proven by
demonstrating that .

0 N

0.2

0.4

0.6

0.8

fact = 0.1

N 1–() 2⁄

G0 GN 1– fact= =

G N 1–() i– Gi=

G N 1–() i– exp
2 N 1– i–() N 1–()–()2

fact()ln

N 1–()2
--- exp

N 1– 2i–()2
fact()ln

N 1–()2
--= =

exp
2i N 1–()–()2

fact()ln

N 1–()2
--- Gi= =
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 54
Shaped Pulses Gaussian Pulse Programs 4.4
4.9.4 Discrete Pulse Mathematics

Having discussed the equations which apply to Gaussian functions, we turn our attention to con-
struction of a Gaussian pulse. In this application the function merely defines the relative intensity
of an applied rf-field in time. At each point in the discrete function, the rf intensity is adjusted to a
new value and that value is maintained until the next point or the end of all points.

A Gaussian pulse is specified in part by a pulse length (tp), a field strength at the maximum, (γB1),
and a percentage of this value that will be the rf intensity at the beginning of the pulse. This is de-
picted in the following figure.

Gaussian Pulse Parameters

Additionally, because instrument amplifiers cannot do an analog Gaussian intensity modulation,
the pulse is broken up into a number of steps and this number also characterizes the pulse. We can
readily depict this situation by drawing rectangles representing the rf-strengths during each point.

Gaussian Pulse Shape

Figure 19-5 A Gaussian pulse wave form. The rf-field strength (gamB1) is discretely changed over
a finite time increment based on the number of steps and the total length of the pulse. This plot was
produced from the program Gplot.cc given at the end of this chapter.

tp

γB1

%γB1

5

10

15

20

25

2 4 6 8 10

ga
m

B
1(

H
z)

time(sec)
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 55
Shaped Pulses Gaussian Pulse Programs 4.4

iven by
Our plan is to maintain symmetric Gaussian waveforms, regardless of the number of point charac-
terizing them. Examples are shown in the next figure.

Gaussian Pulse Symmetry

In practice there is a small delay between each step and each step will not be a true square wave as
rf amplifiers cannot turn on and off instantaneously.

Now, the equation for the Gaussian intensity is given by

(19-13)

which is simply our previous formula multiplied by an rf-field strength . This strength is main-

tained for a specified time increment, , where the total pulse length for the steps is

(19-14)

Note that the discrete Gaussian intensities, as written above, do not contain any time variables.
Howevert the two are related because the “on-resonance” angle of rotation for any step is g

(20)

and the total “on-resonance” rotation due to the Gaussian pulse by

(21)

Because the integral of the plain discrete Gaussian,

depends on the number of steps taken, N, it is clear that the parameters

10 Steps 11 Steps

Gi γB1e
fact()ln 2i N 1–()–[]2 N 1–()2⁄

=

γB1

∆t N

tp N∆t=

θi Gi ∆t×=

θp Gp i, ∆t×
i 0=

N 1–

∑ tp Gp i, ∆t×
i 0=

N 1–

∑ γB1tp Gi

i 0=

N 1–

∑= = =

Gi

i 0=

N 1–

∑

θp tp γB1 N
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 56
Shaped Pulses Gaussian Pulse Programs 4.4
are related. Often the value of is determined by setting the other three parameters according to

(22)

γB1

θp tp Gi

i 0=

N 1–

∑

⁄ γB1=
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 57
Shaped Pulses Gaussian Pulse Programs 4.4
Gaussian Pulse Summary

Analog Gaussians

Discrete Gaussians

G t() exp
t to–()2

–

2σ2
----------------------=

Gi exp

i
1
2
--- N 1–()–

 2
–

2σ2
--=

t1 2⁄ 8ln 2()σ=

G t() td

0

∞

∫ 2πσ=

0.2

0.4

0.6

0.8

1

t1/2

t0 t1

tp

γB1

%γB1 = fact

Gi max 1=

min fact=

e

2i N 1–()–()2 fact()ln

N 1–()2
--

=

Discrete Gaussian Pulses

Gp i, max γB1=

min fact=

γB1e

2i N 1–()–()2 fact()ln

N 1–()2
--

=

tp N ∆t×=

γB1

θp

tp Gi

i 0=

N 1–

∑
--------------------=

0.2

0.4

0.6

0.8

1

(N-1)/20 N-1

fact 0 1[,]∈
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 58
Shaped Pulses Gaussian Pulse Programs 4.4
4.9.5 Gaussian Pulses, No Relaxation

Without relaxation, each step i is given by the solution to the Liouville equation under a constant
effective Hamiltonian in the rotating frame of the applied rf-field. In this case we can write

(22-1)

where is a unitary propagator which evolves the system for time under the Gaussian field

strength . The underscore tilde is meant to denote the rotating frame of the applied rf-field.

Individual propagators are generated from the effective Hamiltonian

(22-2)

where

(22-3)

Starting with the initial density operator, , at the end of N steps we will have

(22-4)

Note that since each the propagators evolves the density operator for a time , at the end of the
sequence the time will be the length of the applied shaped pulse

(22-5)

We can define a Gaussian pulse propagator (no relaxation) to be

(22-6)

Evolution under a Gaussian pulse is then given by

(22-7)

σ̂
˜

i 1+ Ûiσ̂
˜

iUi
1–

=

Ûi ∆t

Gi ~

Ûi iĤi eff, ∆t–()exp=

Ĥi eff, Ĥ0 ΩrfF̂z i,– GiF̂x y,+=

σ̂
˜

0

σ̂
˜

N Ûi

i 0=

N 1–

∏

σ̂
˜

0 Ûi

i 0=

N 1–

∏

 1–

=

∆t

tp N∆t=

ÛGP tp γB1 Ωrf N, , ,() Ûi ∆t γB1 Ωrf, ,()

i 0=

N 1–

∏ ÛN 1– …Û1Û0= =

σ̂
˜

tp t0+() ÛGP tp γB1 Ωrf N, , ,()σ̂
˜

t0()ÛGP
1–

tp γB1 Ωrf N, , ,()=
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 59
Shaped Pulses Gaussian Pulse Programs 4.4
4.9.6 Gaussian Pulses, With Relaxation

We shall now repeat the mathematical flow of the previous sections but account for relaxation in a
rigorous fashion using WBR theory. In this case spin system evolution is given by

(22-8)

where is the Liouvillian superoperator which dictates spin system evolutionn, the differ-

ence density operator at point i, and the steady state at that same point. The difference den-

sity operator is given by

(22-9)

wheras the steady-state matrix itself is determined from

(22-10)

the superoperator containing all Liouvillian terms except those from the commutation Hamil-

tonian superoprator.

Because we plan to cycle through many steps in the application of our Gaussian pulse, it is conve-
nient to rewrite equation (22-8) interms of superoperator propagators.

(22-11)

σ̂
˜

i 1+ iL̂i∆t–()∆exp σ̂
˜

i σ̂
˜

i ss,+=

L̂i ∆σ̂
˜

i

σ̂
˜

i ss,

∆σ̂
˜

i σ̂
˜

i σ̂
˜

i ss,–=

σ̂
˜

i ss,
R̂
˜ i

L̂
˜ i

-----σ̂eq=

R̂
˜ i

σ̂
˜

i 1+ Γiσ̂
˜

i σ̂
˜

i ss,+=
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 60
Shaped Pulses Gaussian Pulse Programs 4.4
4.9.7 Gaussian Pulse Equations

In this section we regroup the applicable equations regarding Gaussian Pulses

Gaussian Shaped Pulse Equations

Op tk()〈 〉 Ap Bp[]k

p

∑ Tr Op Ukσ to() U 1–[]
k

⋅

= =

Bαα’ α’〈 |U α’| 〉 α〈 | U
1–[] α| 〉=

Aαα’ 1〈 |Op†S αα’| 〉 αα’〈 |S 1– σ to() σ̂inf–[] 1| 〉=

Expectation Value at Time tkAαα’ α〈 |Op α’| 〉 α’〈 |σ to() α| 〉=

Unitary Transformation, Hilbert Space

Redfield Theory, Liouville Space

Bαα’ αα’〈 |Λ αα’| 〉=

Op tk()〈 〉 Ap Bp[]k

p

∑=

Aαα’ 1〈 |Op†S αα’| 〉 αα’〈 |S 1– σ to() 1| 〉=

Bαα’ αα’〈 |Λ αα’| 〉=

Op tk()〈 〉 Ap Bp[]k

p

∑ Tr Op ΓRP
k σ to()⋅{ }= =

Op tk()〈 〉 Ap Bp[]k

p

∑ Tr Op σ̂inf⋅{ }+ Tr Op Γk σ to() σ̂inf–() σ̂inf+[]⋅{ }= =

Non-Unitary Transformation, Liouville Space

σ tk() U
kσ to() U

1–[]
k

=

σ tk() Γkσ to()=

U e
iH ∆t()–

=

σ tk() Γk
to() σ̂inf–{ } σ̂inf+=

Γ e L∆t–=

p αα’ α〈 |Op α’| 〉 0≠∀=

p αα’ 1〈 |Op†S αα’| 〉 0≠∀=

p αα’ 1〈 |Op†S αα’| 〉 0≠∀=

Op t()〈 〉 Tr Op σ t()⋅{ } Op† σ t()〈 | 〉= = =

Overall
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 61
Shaped Pulses Gaussian Pulse Programs 4.4

ual
cally

 be-
 a true
4.9.8 Final Notes

A discrete Gaussian function, that is to say a finite array of points with values related to a Gaussian
distribution, will NOT be zero at its endpoints. Rather it will be some finite value the may become
close to zero within the machine precision. In building Gaussian shaped pulses this is important
because normally the initial Gaussian intensity is specified (say at 5% maximum) and should not
be set to zero.

(23)

Additionally, because instrument amplifiers cannot do an analog Gaussian intensity modulation,
the pulse is broken up into a number of steps and this number also characterizes the pulse. Exam-
ples are shown in the next figure. For a given number of steps, the Gaussian can be broken up sym-
metrically or “asymmetrically”. The former requires more sophisticated tracking of the individ
step intensities but will in principle produce better excitation profiles. The latter is mathemati
easier to generate and likely to be what is supplied with a spectrometer.

Typically one will take a number of steps ~103 so the differences between these two constructs
comes small. In practice there is a small delay between each step and the each step is not
square wave as the amplifier does not turn on and off instantaneously.

10 Steps 11 Steps

Symmetric

10 Steps 11 Steps

“Asymmetric” Symmetric “Asymmetric”
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 62
Shaped Pulses Gaussian Pulse Programs 4.4
4.10 Gaussian Pulse Parameters

4.10.1 Introduction

Gaussian pulses are often used in NMR as they can be tailored to be highly selective (i.e. covering
a selected frequency range) with relatively small amplitude and phase distortions. In GAMMA,

such pulses are treated as a special cases (rather than simply a general shaped pulse1) because the
pulse shape symmetry allows for significant computational savings. The module P_Gaussian pro-
vides a variety of functions pertaining to Gaussian shaped pulses. Of interest here are the functions
in P_Gaussian that either return propagators which evolve the density operator or act on the den-
sity operator directly.

4.10.2 Gaussian Pulse Parameters

A Gaussian pulse is specified in part by a pulse length (tp), a field strength at the maximum, (γB1),
and a percentage of this value that will be the rf intensity at the beginning of the pulse (%γB1). Ad-
ditionally, because instrument amplifiers cannot do an analog Gaussian intensity modulation, the
pulse is broken up into a number of steps (N). We can readily depict this situation in the following
figure, using rectangles to represent the rf-strengths during each point.

Four Gaussian Pulse Parameters

Figure 19-6 A Gaussian pulse wave form. The rf-field strength (gamB1) is discretely changed over

1. GAMMA users may construct arbitrary shaped pulses by simply supplying a vector containing the desired
waveform and a few other pulse parameters. Look at the documentation regarding shaped pulses to see how
that is accomplished. We recommend that you use the functions in the Gaussian pulse module when your
programs require such pulses. They are easier to use and the routines faster computationally.

γB
1

time(sec)

tp

γB1

%γB1
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 63
Shaped Pulses Gaussian Pulse Programs 4.4

mple
in a the

. For ex-

e. In this

eter”
aus-
a finite time increment based on the number of steps and the total length of the pulse. The entire
pulse waveform is determined from four parameters {tp, γB1, N, %γB1}. The program which pro-

duced this plot can be found in the documentation for the P_Gaussian module.

Three other parameters are required for a Gaussian pulse, the pulse offset (or carrier frequency),
pulse phase, and the pulse channel. That makes a total of seven parameters for complete character-
ization of a Gaussian pulse in GAMMA. Indeed, use of GAMMA’s Gaussian pulses is quite si
if the user has a clear understanding of the means by which the seven parameters are set
program. This will be the topic of the next sections.

4.10.3 Defining a Gaussian Pulse Directly

This task is accomplished by specifying the seven parameters that define a Gaussian pulse
ample, the following code will do (we will show how to make and apply the pulse later):

4.10.4 Defining a Gaussian Interactively

As in the last section, we need to specify the seven parameters that define a Gaussian puls
case we need to have the program itself ask for the parameters as the program is run.

4.10.5 Defining a Gaussian Pulse in an External File

GAMMA provides a very simple means of defining a Gaussian pulse in an external “param
file. The parameter file is simply an ASCII file which contains parameters that a GAMMA G
sian pulse type will recognize. A GAMMA parameter is a line in a file having the format

Name (type) : value - optional comment

There are 9 parameter names that will be recognized as defining a Gaussian pulse.

Table 1: Gaussian Pulse Parameters

Parameter
Keyword

Assumed
Units

Examples
Parameter (Type) : Value - Statement

Gstps none Gstps (0) : 41 - Steps in Gaussian Pulse

Gang degrees Gang (1) : 90.0 - Gaussian Pulse Angle

Glen seconds Glen (1) : 0.1 - Gaussian Pulse length

Gcut none Gcut (1) : 0.025 - RF cutoff level (%GgamB1 -> 2.5%)

GW Hz GW (1) : 400.0 - Gaussian Pulse Carrier Frequency

Giso none Giso (2) : 1H - Gaussian Pulse Channel

GgamB1 Hz GgamB1 (1) : 55. - Gaussian Pulse RF Field Strength
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 64
Shaped Pulses Gaussian Pulse Programs 4.4
Of course, there are only seven parameters necessary to completely characterize the pulse. Two of
the above parameters are redundant. The first redundancy comes from the three parameters {Gang,
Gtime, GgamB1}. Only two of the three need to be specified. The set {Gang, Gtime} will be used
preferentially if all three are set in the parameter file. The second redundancy comes in the selec-
tivity. Either {Gspin} or {Gwrf, Giso} Sets Selectivity. If Gspin is set it will be preferentially used
and override any Giso and Gwrf settings. However, note that use of Gspin DOES NOT set the
Gaussian pulse selectivity to only affect a particular spin (which is not experimentally possible for
strongly coupled or overlapping spins). Rather, it sets the Gaussian pulse carrier to be at the spin
Larmor frequency.

Two other points are worth mentioning. If one has a homonuclear spin system the selectivity does
not have to be set. Thus, neither Giso nor Gspin need be set if the there is only 1 channel and the
pulse does not need to be spin selective. Some simulations utilize multiple Gaussian pulses, so
there is often a need to define more than one pulse in a parameter file. This may be accomplished
by adding on a (#) to the Gaussian parameter name where # is simply an integer which is a pulse
index. The set of parameters which define a pulse are then all set with the same number in their
names and the number used in the GAMMA program which reads the parameters.

Note that pulse parameters can be mixed with other parameters in a single ASCII file. For example,
you can readily include the Gaussian pulse definition in the same file that defines your spin system.
The code and file would look something like

4.10.6 Constructing a Gaussian Pulse Propagator

d look something like

Gphi degrees Gphi (1) : 0.0 - Gaussian Pulse Phase

Gspin none Gspin (0) : 0 - Gaussian Spin Selectivity

Table 1: Gaussian Pulse Parameters

Parameter
Keyword

Assumed
Units

Examples
Parameter (Type) : Value - Statement
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 65
Shaped Pulses Gaussian Pulse Programs 4.4

itions
g 90
cause
ectrum
ar re-
s and

 be dif-

both the
4.10.7 Example: Gaussian Pulse Profile

This example takes a single spin and applies a specified Gaussian pulse (90y). It repeats this pro-
cess while moving the spins chemical shift through the frequency range over which the profile is
desired. The response versus pulse offset for the spin is plotted, both with and without (magnitude)
the phase information present.

Single Spin Gaussian Pulse Profile

Figure 19-7 The plots were produced from successive runs of the program Gprofile2.cc on page 71.
In all instances the Gaussian was applied at an offset of 400 Hz and the generated profiles con-
structed between 350 and 900 Hz with a block size of 1024 points. The program automatically sets
the Gaussian to be a 90y pulse of 51 steps and an endpoint cutoff of 2.5% maximum intensity. Of
minor interest is the small excitation produces near 900 Hz in the more selective Gaussian’s. This
is a consequence of using only 51 steps for the pulse shape and such effects disappear a the num-
ber of steps increase.

This simulation follows the general rule of thumb in NMR: short strong (hard) pulses promote even
excitation over a broad frequency range and weak long (soft) pulses are selective in that they excite
over a narrow frequency range. Notice that a second rule of thumb is also followed: Long pulses
induce phase distortions off resonance. This is due primarily to the “dephasing” of the trans
during the time it takes to get the magnetization down into the xy-plane. At the end of a lon
pulse, not all magnetization vectors are aligned along an axis perpendicular to the pulse be
they have undergone precession during the pulse itself. In an ideal situation, the resulting sp
would be phase adjusted using a 1st order phase correction. However, that assumes a line
sponse to the pulse which is not strictly the case - especially for strongly coupled spin system
non-uniform pulse waveforms. So, phase distortions in a spectrum due to a long pulse can
ficult to remove by simple phase corrections.

4.10.8 Example: Gaussian 90 Pulse
This example takes a spin system and applies a specified Gaussian pulse (90y). It reads in
spin system and the Gaussian pulse definition from a single GAMMA parameter file.

0

0.1

0.2

0.3

0.4

0.5

400500600700800900

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

400500600700800900

Magnitude Intensity & Phase

tp = 0.1 ms
tp = 1 ms
tp = 10 ms
tp = 100 ms

tp = 0.1 ms
tp = 1 ms
tp = 10 ms
tp = 100 ms
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 66
Shaped Pulses Gaussian Pulse Programs 4.4
Gaussian 90 Pulse Response

Figure 19-8 The plots were produced from successive runs of the program Gpulse0.cc on page 72.
In all instances the program was given the parameter file GlutamicA.sys on page 73 which contains
both a spin system definition and the Gaussian pulse parameters. Only the Gaussian pulse length
was changed between the successive runs. The executable (a.out) was repeatedly invoked with the
command “a.out GlutamicA.sys 350 900 1024 0.02” which set the plot range to span 350-900 Hz,
the block size to 1K and the single quantum transition linewidths to .02 Hz.

Note that, although there is good selectivity with the 100 ms pulse, the inherent phases are terrible.
In the next examples we shall attempt to minimize the phase errors by two different means. First,
rather than using a 90 pulse we can attempt to use a Gaussian 270 pulse which has some self-refo-

cusing properties which can reduce such problems1. Second we can attempt to perform a phase cor-
rection, either 1st order or using a single spin’s pulse response to the pulse.

1. Or worsen them in strongly coupled spin systems!

tp = 0.1 ms

tp = 1 ms

tp = 10 ms

tp = 100 ms

400500600700800
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 67
Shaped Pulses Gaussian Pulse Programs 4.4
4.10.9 Example: Gaussian 270 Pulse
This example takes a spin system and applies a specified Gaussian pulse (270y). It reads in both
the spin system and the Gaussian pulse definition from a single GAMMA parameter file.

Gaussian 270 Pulse Response

Figure 19-9 The plots were produced from successive runs of the program Gpulse1.cc on page 74.
In all instances the program was given the parameter file GlutamicA2.sys on page 73 which con-
tains both a spin system definition and the Gaussian pulse parameters. Only the Gaussian pulse
length was changed between the successive runs. The executable (a.out) was repeatedly invoked
with the command “a.out GlutamicA2.sys 350 900 1024 0.02” which set the plot range to span 350-
900 Hz, the block size to 1K and the single quantum transition linewidths to 0.02 Hz.

In comparison with the previous simulation which used a 90 Gaussian pulse we see that there is
some improvement in the phase behavior. However, there still remains quite a bit of dispersive na-
ture to the multiplet with a 100 ms pulse.

400500600700800

tp = 0.1 ms

tp = 10 ms

tp = 100 ms

tp = 1 ms
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 68
Shaped Pulses Gaussian Pulse Programs 4.4
4.11 Example: Gaussian Pulse, Profile Corrected

This example takes a spin system and applies a specified Gaussian pulse. It reads in both the spin
system and the Gaussian pulse definition from a single GAMMA parameter file. In this case, it also
creates a single spin response profile which displays how magnetization if affected by offset. Ad-
ditionally, it adjusts the phases based on the single spin response - a rather robust phase correction.

Gaussian 270 Pulse Response, Profile Phase Corrected

Figure 19-10 Plots produced from successive runs of Gpulcorr2.cc on page 75. The program was
given the parameter file GlutamicA2.sys on page 73 which contains both a spin system definition
and the Gaussian pulse parameters. Only the Gaussian pulse length was changed between the
successive runs. The executable (a.out) was repeatedly invoked with the command “a.out
GlutamicA2.sys 350 900 1024 0.02” which set the plot range to span 350-900 Hz, the block size to
1K and the single quantum transition linewidths to 0.02 Hz. The single spin profiles (magnitudes)
are shown above the spectra in each case. (Note - a 90 Gaussian phase corrects better here!)

A quick comparison with the previous two simulations indicates that use of the single spin profile
produces superior spectra. Unfortunately, this method would be time consuming and difficult to do
experimentally. The 100 ms correction suffers from too few steps (41) and too high of end intensity
(2.5%) characterizing the Gaussian, evident from the intensity near 800 Hz.

400500600700800

tp = 0.1 ms

tp = 10 ms

tp = 100 ms

tp = 1 ms
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 69
Shaped Pulses Gaussian Pulse Programs 4.4

not
l seems
4.12 Example: Gaussian Pulse, Linear Phase Correction

Since we only have zero and first order phase corrections at our disposal on a spectrometer (without
some fudging), it is perhaps worthwhile to examine our ability to use such a correction applied to
the simulated spectra using selective Gaussians. Noting how difficult phase correction was in the
previous example when the Gaussian was very long (selective), we expect linear phase correction
to not perform very well.

Gaussian 90 Pulse Response, Standard Phase Correction

Figure 19-11 Plots produced from successive runs of Gpulpcorr2.cc on page 77. The program was
given the parameter file slightly adjusted from GlutamicA2.sys on page 73 which contains both a
spin system definition and the Gaussian pulse parameters. The Gaussian pulse length was
changed between the successive runs. The pulse angle and phase were both set to 90. The exe-
cutable (a.out) was repeatedly invoked with the command “a.out GlutamicA2.sys 350 900 1024
0.02” which set the plot range to span 350-900 Hz, the block size to 1K and the single quantum
transition linewidths to 0.02 Hz.

Surprisingly, this type of phase correction works quite well. Again, I’ll point out that one can
directly compare the 100 ms run here with the previous calculation as the 90 pulse in genera
to phase correct better than a 270 pulse in strongly coupled systems.

400500600700800

tp = 0.1 ms

tp = 10 ms

tp = 100 ms

tp = 1 ms
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 70
Shaped Pulses Gaussian Pulse Programs 4.4
Scott Smith May 8, 1998

GAMMA Gaussian Pulses 71
Gaussian Pulse Programs 4.4

May 8, 1998

)? “, Fhigh);
 -1); // Frequency increment

changing Entities

// A single proton
Detect F-
 // System at equilibrium

// RF field Ham. (rot. fr.)
ys); // RF Offset (rot. fr.)

e Changing Entities

// Matrix for transitions
// Effective Hams
 // Prepared density oper

The Simulation

// This for profile & magnitude

// Shift relative to pulse
// H in rotating frame
// Gaussian pulse propagator
// Evolve under the pulse
// Get xy-magnetization
// Store magnetization at i
// Store magnetization at i
// Increment the offset

// Keep screen nice
// Print all before gnuplot

); // Spectrum out in gnuplot
,Fhigh); // Magnitudes out in gnuplot

// File of gnuplot commands
// Set 1D plots to use lines
// Plot the magnetization response
// Plot the magnitization magnitude

 \n”; // Pause before quitting gnuplot
// Exit gnuplot
// Close gnuplot command file
// This actually does plot to screen

// Keep the screen nice
Scott Smith

Gprofile2.cc
/* Gprofile2.cc **-*-c++-*-
** **
** This program plots a Gaussian shaped pulse profile. The response **
** of a single spin to the shaped pulse is measured versus rf-offset. **
** This version extends Gprofile1.cc by allowing for the plot to be **
** asymmetric about 0 Hz. Thuse the pulse can be applied at any **
** frequency and the plot can between any two frequencies. **
** **
** Author: S.A. Smith **
** Date: July 3 1996 **
** Last Update: July 3 1996 **
** **
***/

#include <gamma.h> // Include all of GAMMA

main(int argc, char* argv[])
 {
 cout << “\n\n\t\t\t GAMMA 1D NMR Simulation Program”;
 cout << “\n\t\t\tGaussian Pulse Profile, No Relaxation\n\n”;

// Set Gaussian Pulse Parameters

// (Set As A 90y Pulse Of 51 Steps, No Offset, No Phase, 2.5% Cutoff)

 int qn = 1; // Query value
 Gpuldat Gdata; // For Gaussian pulse params
 double tp; // Gaussian pulse length
 query_parameter(argc, argv, qn++, // Read in this value
 “\n\tGaussian Pulse Length (sec)? “, tp);
 double Wrf; // Gaussian pulse offset
 query_parameter(argc, argv, qn++, // Read in this value
 “\n\tGaussian Pulse Offset(Hz)? “, Wrf);
 Gdata.N = 51; // Set pulse steps
 Gdata.Wrf = Wrf; // Set pulse offset
 Gdata.Iso = String(“1H”); // Set pulse selectivity
 Gdata.tau = tp; // Set the pulse length
 Gdata.fact = 0.025; // Set pulse cutoff (2.5%)
 Gdata.phi = 0.0; // Set pulse phase
 Gdata.gamB1 = GgamB1(90.0, tp, 51, 0.025); // Set the pulse strength
 print_Gpulse(cout, Gdata); // Print Gaussian pulse params

// Set the Profile Parameters

int npts; // Number of points
 query_parameter(argc, argv, qn++, // Read in this value
 “\n\tProfile Block Size? “, npts);
 double Flow, Fhigh; // Profile frequency limits
 query_parameter(argc, argv, qn++, // Read in this value
 “\n\tProfile Plotted Low Frequency (Hz)? “, Flow);
 query_parameter(argc, argv, qn++, // Read in this value

 “\n\tProfile Plotted High Frequency (Hz
 double delW = (Fhigh-Flow)/double(npts

// Set the Un

 spin_system sys(1);
 gen_op D = Fm(sys); //
 gen_op sigma0 = sigma_eq(sys);
 gen_op Fxy = Fy(sys);
 gen_op wFz = complex(Gdata.Wrf)*Fz(s

// Set th

 matrix mx;
 gen_op Heff;
 gen_op sigmap;
 gen_op UGauss;
 gen_op H;
 complex z;

// Perform

 row_vector profile(npts), profnorm(npts);
 double offset = Flow;
 for(int i=0; i<npts; i++)
 {
 sys.shift(0, offset);
 H = Ho(sys) + wFz;
 UGauss = Gpulse_U(H, Fxy, Gdata);
 sigmap = evolve(sigma0, UGauss);
 z = trace(D, sigmap);
 profile.put(z,i);
 profnorm.put(norm(z),i);
 offset += delW;
 }

 cout << “\n\n”;
 cout.flush();
 GP_1D(“profile.gnu”, profile,0,Flow,Fhigh
 GP_1D(“profnorm.gnu”, profnorm,0,Flow
 ofstream gnuload(“gnu.dat”);
 gnuload << “set data style line\n”;
 gnuload << “plot \”profile.gnu\””;
 gnuload << “, \”profnorm.gnu\”\n”;
 gnuload << “pause -1 \’<Return> To Exit
 gnuload << “exit\n”;
 gnuload.close();
 system(“gnuplot \”gnu.dat\”\n”);

 cout << “\n\n”;
 }

GAMMA Gaussian Pulses 72
Gaussian Pulse Programs 4.4

May 8, 1998

// For Gaussian RF Hamiltonian
ta); // Gaussian pulse propagator

Pulse Sequence

// Apply Gaussian pulse
// Set up 1D acquisition

tting Parameters

// Number of points in FID
// Get number of points

start);
// Get number of points

d);

// Get number of points

// Half-height linewidth
// Get number of points

// Set input w offset, lwhh

t Plot and Draw

d,1.e-3);// Frequency acquisition
nd); // Output in gnuplot

// Interactive 1D gnuplot
Scott Smith

Gpulse0.cc
/* Gpulse0.cc ***-*-c++-*-
** **
** NMR 1D Simulator Using A Gaussian Shaped Pulse **
** **
** This program is an automated 1D NMR spectral simulator using **
** shaped Gaussian pulses. It runs inteactively, asking the user to **
** supply a parameter file filename as well as plot parameters. The **
** system input is simply pulsed by the specified Gaussian. **
** **
** This program does not include relaxation effects. Also, the plot **
** is immediate in gnuplot, so this will die if gnuplot is that **
** program is not accessible. Finally, I made the y-axis the default **
** axis for the pulse (I don’t know why anymore....) so that a 0 phase **
** for input results in absorption on resonance using F- to detect, if **
** the pulse is 90 that is. **
** **
** Author: S.A. Smith **
** Date: 7/2/96 **
** Update: 7/2/96 **
** Version: 3.5 **
** **
***/

#include <gamma.h> // Include GAMMA

main (int argc, char* argv[])

 {
 cout << “\n\n\t\t\tGAMMA 1D NMR Simulation Program”;
 cout << “\n\t\t\tGaussian Pulses, No Relaxation\n\n”;

// Read in System and Pulse Parameters

 int qn = 1;
 String filein; // Input system file name
 query_parameter(argc, argv, qn++, // Get system file name
 “\n\tInput Parameter File? “, filein);
 sys_dynamic sys; // A spin system
 sys.read(filein); // Read in the system
 Gpuldat Gdata = read_Gpulse(filein, sys); // Read Gaussian pulse params
 print_Gpulse(cout, Gdata); // Print Gaussian pusle params
 sys.offsetShifts(Gdata.Wrf); // Center system at pulse

// Determine Isotope Detection Type, Set Variables

 String IsoD;
 query_isotope(sys, IsoD); // Get the detection isotope
 gen_op sigma = sigma_eq(sys); // Set density matrix equilibrium
 gen_op H = Ho(sys); // Isotropic Hamiltonian
 gen_op detect = Fm(sys, IsoD); // Set detection operator to F-
 acquire1D ACQ(detect, H, 1.e-3); // No relaxation during acquisition (Ho)

 gen_op Fxy = Fy(sys, Gdata.Iso);
 gen_op UGauss = Gpulse_U(H,Fxy,Gda

// Apply The

 sigma = evolve(sigma, UGauss);
 matrix mx = ACQ.table(sigma);

// Set The Plo

 double Fstart, Fend;
 query_parameter(argc, argv,
 qn++, “\n\tPlot Starting Frequency? “, F
 query_parameter(argc, argv,
 qn++, “\n\tPlot Final Frequency? “, Fen
 int N;
 query_parameter(argc, argv,
 qn++, “\n\tPlot Points? “, N);
 double lwhh;
 query_parameter(argc, argv,
 qn++, “\n\tPlot Linewidths? “, lwhh);
 offset(mx, Gdata.Wrf, lwhh, 1);

// Construc

 row_vector data=ACQ.F(mx,N,Fstart,Fen
 GP_1D(“Gauss.gnu”, data, 0 , Fstart, Fe
 GP_1Dplot(“gnu.dat”, “Gauss.gnu”);
 cout << “\n”;
 }

GAMMA Gaussian Pulses 73
Gaussian Pulse Programs 4.4

May 8, 1998

icA2.sys
ame (glutamic acid)
f Spins in the System
pe Type
pe Type
pe Type
pe Type
pe Type
 Shifts in PPM
 Shifts in PPM
 Shifts in PPM
 Shifts in PPM
 Shifts in PPM
Constants in Hz
Constants in Hz
Constants in Hz
Constants in Hz
Constants in Hz
Constants in Hz
Constants in Hz
Constants in Hz
Constants in Hz
Constants in Hz
ngth MHz (1H based)

ed, {Gang, Gtime} preferentially
 Selectivity, {Gspin} preferentially
uclear system

r the Gaussian pulse
le (degrees)

gth (seconds)
level (%GgamB1 -> 2.5%)
y at which to apply pulse
n which to apply pulse

 which to apply pulse
trength (Hz)
Scott Smith

GlutamicA.sys

SysName (2) : Glutamic - System Name (glutamic acid)
NSpins (0) : 5 - Number of Spins in the System
Iso(0) (2) : 1H - Spin Isotope Type
Iso(1) (2) : 1H - Spin Isotope Type
Iso(2) (2) : 1H - Spin Isotope Type
Iso(3) (2) : 1H - Spin Isotope Type
Iso(4) (2) : 1H - Spin Isotope Type
PPM(0) (1) : 4.295 - Chemical Shifts in PPM
PPM(1) (1) : 2.092 - Chemical Shifts in PPM
PPM(2) (1) : 1.969 - Chemical Shifts in PPM
PPM(3) (1) : 2.314 - Chemical Shifts in PPM
PPM(4) (1) : 2.283 - Chemical Shifts in PPM
J(0,1) (1) : 4.6 - Coupling Constants in Hz
J(0,2) (1) : 9.5 - Coupling Constants in Hz
J(0,3) (1) : 0.0 - Coupling Constants in Hz
J(0,4) (1) : 0.0 - Coupling Constants in Hz
J(1,2) (1) : -14.7 - Coupling Constants in Hz
J(1,3) (1) : 7.3 - Coupling Constants in Hz
J(1,4) (1) : 7.3 - Coupling Constants in Hz
J(2,3) (1) : 7.3 - Coupling Constants in Hz
J(2,4) (1) : 7.3 - Coupling Constants in Hz
J(3,4) (1) : -14.6 - Coupling Constants in Hz
Omega (1) : 200 - Field Strength MHz (1H based)

 Gaussian Pulse Definitions

Note1: Two of {Gang, Gtime, GgamB1} used, {Gang, Gtime} preferentially
Note2: Either {Gspin} or {Gwrf, Giso} Sets Selectivity, {Gspin} preferentially
Note3: {Giso} Need not be set in a homonuclear system

Gstps (0) : 41 - Steps over the Gaussian pulse
Gang (1) : 90.0 - Pulse angle (degrees)
Glen (1) : .1 - Pulse length (seconds)
Gcut (1) : 0.025 - RF cutoff level (%GgamB1 -> 2.5%)
GW (1) : 400.0 - Frequency at which to apply pulse
Giso (2) : 1H - Channel on which to apply pulse
Gphi (1) : 0.0 - Phase on which to apply pulse
#GgamB1 (1) : 55. - RF field strength (Hz)

Glutam
SysName (2) : Glutamic - System N
NSpins (0) : 5 - Number o
Iso(0) (2) : 1H - Spin Isoto
Iso(1) (2) : 1H - Spin Isoto
Iso(2) (2) : 1H - Spin Isoto
Iso(3) (2) : 1H - Spin Isoto
Iso(4) (2) : 1H - Spin Isoto
PPM(0) (1) : 4.295 - Chemical
PPM(1) (1) : 2.092 - Chemical
PPM(2) (1) : 1.969 - Chemical
PPM(3) (1) : 2.314 - Chemical
PPM(4) (1) : 2.283 - Chemical
J(0,1) (1) : 4.6 - Coupling
J(0,2) (1) : 9.5 - Coupling
J(0,3) (1) : 0.0 - Coupling
J(0,4) (1) : 0.0 - Coupling
J(1,2) (1) : -14.7 - Coupling
J(1,3) (1) : 7.3 - Coupling
J(1,4) (1) : 7.3 - Coupling
J(2,3) (1) : 7.3 - Coupling
J(2,4) (1) : 7.3 - Coupling
J(3,4) (1) : -14.6 - Coupling
Omega (1) : 200 - Field Stre

 Gaussian Pulse Definitions

Note1: Two of {Gang, Gtime, GgamB1} us
Note2: Either {Gspin} or {Gwrf, Giso} Sets
Note3: {Giso} Need not be set in a homon

Gstps (0) : 41 - Steps ove
Gang (1) : 270.0 - Pulse ang
Glen (1) : .0001 - Pulse len
Gcut (1) : 0.025 - RF cutoff
GW (1) : 400.0 - Frequenc
Giso (2) : 1H - Channel o
Gphi (1) : 270.0 - Phase on
#GgamB1 (1) : 55. - RF field s

GAMMA Gaussian Pulses 74
Gaussian Pulse Programs 4.4

May 8, 1998

ta); // Gaussian pulse propagator

Pulse Sequence

// Apply Gaussian pulse
// Set up 1D acquisition

tting Parameters

// Number of points in FID
// Get number of points

start);
// Get number of points

d);

// Get number of points

// Half-height linewidth
// Get number of points

// Set input w offset, lwhh

t Plot and Draw

nd,1.e-3);// Frequency acquisition
nd); // Output in gnuplot

// Interactive 1D gnuplot
Scott Smith

Gpulse1.cc
/* Gpulse1.cc ***-*-c++-*-
** **
** NMR 1D Simulator Using A Gaussian Shaped Pulse **
** **
** This program is an automated 1D NMR spectral simulator using **
** shaped Gaussian pulses. It runs inteactively, asking the user to **
** supply a parameter file filename as well as plot parameters. The **
** system input is simply pulsed by the specified Gaussian. It is a **
** modification from Gpulse0.cc in that it correctly uses the input **
** pulse phase and uses the input pulse channel for the pulse/acquire **
** selectivity. **
** **
** This program does not include relaxation effects. Also, the plot **
** is immediate in gnuplot, so this will die if gnuplot is that **
** program is not accessible. **
** **
** Author: S.A. Smith **
** Date: 7/8/96 **
** Update: 7/8/96 **
** Version: 3.5 **
** **
***/

#include <gamma.h> // Include GAMMA

main (int argc, char* argv[])

 {
 cout << “\n\n\t\t\tGAMMA 1D NMR Simulation Program”;
 cout << “\n\t\t\tGaussian Pulses, No Relaxation\n\n”;

// Read in System and Pulse Parameters

 int qn = 1;
 String filein; // Input system file name
 query_parameter(argc, argv, qn++, // Get system file name
 “\n\tInput Parameter File? “, filein);
 sys_dynamic sys; // A spin system
 sys.read(filein); // Read in the system
 Gpuldat Gdata = read_Gpulse(filein, sys); // Read Gaussian pulse params
 print_Gpulse(cout, Gdata); // Print Gaussian pusle params
 sys.offsetShifts(Gdata.Wrf); // Center system at pulse

// Determine Isotope Detection Type, Set Variables

 String IsoD = Gdata.Iso;
 gen_op sigma = sigma_eq(sys); // Set density matrix equilibrium
 gen_op H = Ho(sys); // Isotropic Hamiltonian
 gen_op detect = Fm(sys, IsoD); // Set detection operator to F-
 acquire1D ACQ(detect, H, 1.e-3); // No relaxation during acquisition (Ho)
 gen_op FXY = Fxy(sys, IsoD, Gdata.phi); // For Gaussian RF Hamiltonian

 gen_op UGauss = Gpulse_U(H,FXY,Gda

// Apply The

 sigma = evolve(sigma, UGauss);
 matrix mx = ACQ.table(sigma);

// Set The Plo

 double Fstart, Fend;
 query_parameter(argc, argv,
 qn++, “\n\tPlot Starting Frequency? “, F
 query_parameter(argc, argv,
 qn++, “\n\tPlot Final Frequency? “, Fen
 int N;
 query_parameter(argc, argv,
 qn++, “\n\tPlot Points? “, N);
 double lwhh;
 query_parameter(argc, argv,
 qn++, “\n\tPlot Linewidths? “, lwhh);
 offset(mx, Gdata.Wrf, lwhh, 1);

// Construc

 row_vector data=ACQ.F(mx,N,Fstart,Fe
 GP_1D(“Gauss.gnu”, data, 0 , Fstart, Fe
 GP_1Dplot(“gnu.dat”, “Gauss.gnu”);
 cout << “\n”;
 }

GAMMA Gaussian Pulses 75
Gaussian Pulse Programs 4.4

May 8, 1998

 // Set density op at equilibrium
 // Isotropic Hamiltonian

 // Set detection operator to F-
 // Set for acquisition, No rel.
; // For Gaussian RF Hamiltonian
ta); // Gaussian pulse propagator

Pulse Sequence

 // Apply Gaussian pulse
 // Perform 1D acquisition

ng Parameters

// Number of points in FID
// Get number of points

// Get number of points
d);

// Get number of points

 // Half-height linewidth
// Get number of points

// Set input w offset, lwhh

 Single Spin Profile

termine Phase Behavior)

// Single spin system
// Set detection operator to F-
// For Gaussian RF Hamiltonian
// Initial density matrix
// Block for the profile
// Begin @ 1st plotted frequency
// Offset increment

// Loop offsets

// Set spin chemical shift
// In pulse rotating frame
// Calculate the Hamiltonian
// Gaussian pulse propagator
// Apply Gaussian pulse
// Get magnetization
// Store magnitude
// Adjust the offset

// Output in gnuplot

 Using Phases for a 1-Spin System

Spin System and Corrected Discretely
Scott Smith

Gpulcorr2.cc
/* Gpulcorr3.cc ***
** **
GAMMA Gaussian Pulse With Profiling Simulation **
** **
** This program is an updated version of that published in the original **
** GAMMA article, JMR 106A, 75-105 (1994). Given an input spin system, **
** a specified Gaussian pulse, and a few other parameters, this will **
** calculate an NMR spectrum following the application of the pusle. **
** At the same time, the Gaussian pulse exitation profile based on **
** response to a single spin 1/2 particle is computed. This profile is **
** used to phase correct the spectrum from the input spin system. The **
** phase corrected spectrum and the magnitude single spin profile are **
** plotted to the screen using gnuplot. **
** **
** This program is similar to Gpulcorr1.cc but it just outputs a single **
** plot which contains the corrected spectrum and the single spin’s **
** profile (magnitude mode). **
** **
** Author: S.A. Smith **
** Date: 7/3/96 **
** Last Date: 7/8/96 **
** Copyright: S.A. Smith, July 1996 **
** Limits: 1.) Needs >= GAMMA 3.5 **
** 2.) Uses Gnuplot Interactively **
** 3.) No relaxation effects are included. **
** **
***/

#include <gamma.h> // Include GAMMA itself

main (int argc, char** argv)

 {
 cout << “\n\n\t\t\tGAMMA 1D NMR Simulation Program”;
 cout << “\n\t\t Gaussian Pulse Profile, No Relaxation\n\n”;

// Read in System and Pulse Parameters

 int qn = 1; // Query number
 String filein; // Input system file name
 query_parameter(argc, argv, qn++, // Get system file name
 “\n\tInput Parameter File? “, filein);
 spin_system sys; // A spin system
 sys.read(filein); // Read in the system
 Gpuldat Gdata = read_Gpulse(filein, sys); // Read Gaussian pulse params
 print_Gpulse(cout, Gdata); // Print Gaussian pusle params
 sys.offsetShifts(Gdata.Wrf); // Center system at pulse

// Determine Isotope Detection Type, Set Variables

 String IsoD = Gdata.Iso; // Set detection=pulse isotope

 gen_op sigma = sigma_eq(sys);
 gen_op H = Ho(sys);
 gen_op detect = Fm(sys, IsoD);
 acquire1D ACQ(detect, H, 1.e-3);
 gen_op FXY = Fxy(sys, IsoD, Gdata.phi)
 gen_op UGauss = Gpulse_U(H,FXY,Gda

// Apply The

 sigma = evolve(sigma, UGauss);
 matrix mx = ACQ.table(sigma);

// Set Plotti

 double Fst, Fend;
 query_parameter(argc, argv, qn++,
 “\n\tPlot Starting Frequency? “, Fst);
 query_parameter(argc, argv,
 qn++, “\n\tPlot Final Frequency? “, Fen
 int N;
 query_parameter(argc, argv,
 qn++, “\n\tPlot Points? “, N);
 double lwhh;
 query_parameter(argc, argv,
 qn++, “\n\tPlot Linewidths? “, lwhh);
 offset(mx, Gdata.Wrf, lwhh, 1);

// Calculate The

// (Generally De

 spin_system sys1(1);
 detect = Fm(sys1, IsoD);
 FXY = Fxy(sys1, IsoD, Gdata.phi);
 gen_op sigma0 = sigma_eq(sys1);
 row_vector profile(N);
 double voff = Fst;
 double delv = (Fend-Fst)/double(N-1);
 complex z;
 for(int offs=0; offs<N; offs++)
 {
 sys1.shift(0, voff);
 sys1.offsetShifts(Gdata.Wrf);
 H = Ho(sys1);
 UGauss = Gpulse_U(H, FXY, Gdata);
 sigma = evolve(sigma0, UGauss);
 z = trace(detect, sigma);
 profile.put(norm(z), offs);
 voff += delv;
 }
 GP_1D(“profile.gnu”,profile,0,Fst,Fend);

// Perform the Phase Correction

// Done For Each Transition in the

GAMMA Gaussian Pulses 76
Gaussian Pulse Programs 4.4

May 8, 1998
Scott Smith

 double w;
 complex zel;
 int ntr = mx.rows(); // Number of transitions
 for(int tr=0; tr<ntr; tr++) // Loop the transitions
 {
 w = mx.getIm(tr,0)/(2.0*PI); // Transition frequency (Hz)
 sys1.shift(0, w); // Set spin chemical shift
 sys1.offsetShifts(Gdata.Wrf); // In pulse rotating frame
 H = Ho(sys1); // Calculate the Hamiltonian
 UGauss = Gpulse_U(H, FXY, Gdata); // Gaussian pulse propagator
 sigma = evolve(sigma0, UGauss); // Apply Gaussian pulse
 z = trace(detect, sigma); // Get transverse magnetization
 zel = mx.get(tr,1); // Large sytem transition intensity
 zel *= norm(z)/z; // Adjust transition phase
 mx.put(zel,tr,1); // Reset (adjusted) intensity
 }
 row_vector spec = ACQ.F(mx,N,Fst,Fend,1.e-3); // Frequency acquisition
 GP_1D(“spec.gnu”,spec,0,Fst,Fend); // Output in gnuplot

// Now Output the Corrected Spectrum & Profile Magnitude to Screen

 cout << “\n\n”; // Keep screen nice
 cout.flush(); // Also keeps screen nice
 ofstream gnuload(“gnu.dat”); // File of gnuplot commands
 gnuload << “set data style line\n”; // Set 1D plots to use lines
 gnuload << “set xlabel \”W(Hz)\”\n”; // Set X axis label
 gnuload << “set ylabel \”Intensity\”\n”; // Set Y axis label
 gnuload << “set title\”Spectrum\”\n”; // Set plot title
 gnuload << “plot \”spec.gnu\””; // Command to plot both
 gnuload << “, \”profile.gnu\”\n”; // at the same time
 gnuload << “pause -1 \’<Return> To Exit \n”; // Pause before exit
 gnuload << “exit\n”; // Now exit gnuplot
 gnuload.close(); // Close gnuplot command file
 system(“gnuplot \”gnu.dat\”\n”); // Invoke gnuplot now
 cout << “\n\n”; // Keep the screen nice
 }

GAMMA Gaussian Pulses 77
Gaussian Pulse Programs 4.4

May 8, 1998

 // Apply Gaussian pulse
 // Perform 1D acquisition

ng Parameters

// Number of points in FID
// Get number of points

 // Get number of points
d);

// Get number of points

// Half-height linewidth
// Get number of points

// Set input w offset, lwhh
d,1.e-3); // Frequency acquisition

// Output in gnuplot

r Phase Corrected Spectrum

// Phase correct
nd,1.e-3);// Frequency acquisition
nd); // Output in gnuplot

hase Corrected Spectrum to Screen

// Keep screen nice
// Also keeps screen nice
// File of gnuplot commands
// Set 1D plots to use lines
// Set X axis label
// Set Y axis label
// Set plot title
// Command to plot both
// at the same time

 \n”; // Pause before exit
// Now exit gnuplot
// Close gnuplot command file
// Invoke gnuplot now
// Keep the screen nice
Scott Smith

Gpulpcorr2.cc
/* Gpulpcorr2.cc ***
** **
** GAMMA Gaussian Pulse With 1st Order Phase Correction **
** **
** This program applies a Gaussian pulse to an arbitrary spin system. **
** The resulting spectrum is then adjusted by a common 1st order phase **
** correction. The idea is that we’d like to see how well the phase **
** corrections available in the spectrometer handle fixing the phase **
** problems resulting from selective Gaussian pulses. **
** **
** Author: S.A. Smith **
** Date: 7/9/96 **
** Last Date: 7/9/96 **
** Copyright: S.A. Smith, July 1996 **
** Limits: 1.) Needs >= GAMMA 3.5 **
** 2.) Uses Gnuplot Interactively **
** 3.) No relaxation effects are included. **
** **
***/

#include <gamma.h> // Include GAMMA itself

main (int argc, char** argv)

 {
 cout << “\n\n\t\t\tGAMMA 1D NMR Simulation Program”;
 cout << “\n\t\t Gaussian Pulse, 1st Order Phase Correction\n\n”;

// Read in System and Pulse Parameters

 int qn = 1; // Query number
 String filein; // Input system file name
 query_parameter(argc, argv, qn++, // Get system file name
 “\n\tInput Parameter File? “, filein);
 spin_system sys; // A spin system
 sys.read(filein); // Read in the system
 Gpuldat Gdata = read_Gpulse(filein, sys); // Read Gaussian pulse params
 print_Gpulse(cout, Gdata); // Print Gaussian pusle params
 sys.offsetShifts(Gdata.Wrf); // Center system at pulse

// Determine Isotope Detection Type, Set Variables

 String IsoD = Gdata.Iso; // Set detection=pulse isotope
 gen_op sigma = sigma_eq(sys); // Set density op at equilibrium
 gen_op H = Ho(sys); // Isotropic Hamiltonian
 gen_op detect = Fm(sys, IsoD); // Set detection operator to F-
 acquire1D ACQ(detect, H, 1.e-3); // Set for acquisition, No rel.
 gen_op FXY = Fxy(sys, IsoD, Gdata.phi); // For Gaussian RF Hamiltonian
 gen_op UGauss = Gpulse_U(H,FXY,Gdata); // Gaussian pulse propagator

// Apply The Pulse Sequence

 sigma = evolve(sigma, UGauss);
 matrix mx = ACQ.table(sigma);

// Set Plotti

 double Fst, Fend;
 query_parameter(argc, argv, qn++,
 “\n\tPlot Starting Frequency? “, Fst);
 query_parameter(argc, argv,
 qn++, “\n\tPlot Final Frequency? “, Fen
 int N;
 query_parameter(argc, argv,
 qn++, “\n\tPlot Points? “, N);
 double lwhh;
 query_parameter(argc, argv,
 qn++, “\n\tPlot Linewidths? “, lwhh);
 offset(mx, Gdata.Wrf, lwhh, 1);
 row_vector spec = ACQ.F(mx,N,Fst,Fen
 GP_1D(“spec.gnu”,spec,0,Fst,Fend);

// Calculate The 1st Orde

 pcorrect(mx, Gdata.Wrf, Fend, 10);
 row_vector paspec=ACQ.F(mx,N,Fst,Fe
 GP_1D(“paspec.gnu”, paspec, 0, Fst, Fe

// Now Output the Spectrum & P

 cout << “\n\n”;
 cout.flush();
 ofstream gnuload(“gnu.dat”);
 gnuload << “set data style line\n”;
 gnuload << “set xlabel \”W(Hz)\”\n”;
 gnuload << “set ylabel \”Intensity\”\n”;
 gnuload << “set title\”Spectrum\”\n”;
 gnuload << “plot \”spec.gnu\””;
 gnuload << “, \”paspec.gnu\”\n”;
 gnuload << “pause -1 \’<Return> To Exit
 gnuload << “exit\n”;
 gnuload.close();
 system(“gnuplot \”gnu.dat\”\n”);
 cout << “\n\n”;
 }

GAMMA Gaussian Pulses 78
Gaussian Pulse Programs 4.4

May 8, 1998

*** **/

// Include all of GAMMA

// Query number
// Number of points
// Gaussian pulse parameters
// Get pulse parameters

// Fill vector with waveform
// Keep screen nice
// Output rf lineshape gnuplot
// File of gnuplot commands
// Set 1D plots to use lines
// Set X axis label
// Set Y axis label

ape\”\n”; // Set plot title
// Command to plot

 \n”; // Command to pause
// Command to exit gnuplot
// Close gnuplot command file
// Now, actually run gnuplot
// When plot is complete, see

]? “ ;// if output in FrameMaker is
// desired.

// Output to Framemaker
// Keep the screen nice
Scott Smith

Gplot.cc

Generate Plots of Gaussian Pulse Waveforms

/* Gplot.cc **-*-c++-*-
** **
** This program plots the rf-field amplitude versus time for **
** given a Gaussian pulse as specified by four parameters: **
** **
** 1.) The field strength at maximum **
** 2.) The intensity cutoff (%) at the pulse endpoints **
** 3.) The number of steps to take for the pulse **
** 4.) The time over which the pulse is active **
** **
** A gaussian function centered about time t is given formally by **
** o **
** **
** [2 / 2] **
** G(t) = exp | -(t-t) / (2*sigma) | **
** [0 /] **
** **
** The discrete function is similar except we would like to define **
** sigma in terms of a cutoff. That is to say, we should like to set **
** the Gaussian linewidth such that the first and last points are at **
** a set percentage (of maximum == 1). **
** **
** For a cutoff of X%, we need to satisfy the following conditions **
** **
** 2 2 **
** 0.0X = exp(-N / 8*sigma) **
** **
** or **
** sigma = N / sqrt[-8*ln(0.0X)] **
** **
** where N is the number of Gaussian steps taken and N/2 is the peak **
** maximum. Setting the peak maximum to be related to an rf-field **
** strength, this leaves us with the formula **
** **
** [2 2] **
** G(i) = exp | (2i-N) ln(0.0X)/ N | **
** [] **
** **
** The output is sent directly to the screen using Gnuplot. The user **
** may also have a plot output in Framemaker MIF format. **
** **
** **
** Author: S.A. Smith **
** Date: May 2 1995 **
** Last Update: May 8 1995 **
** **

**

#include <gamma.h>

main(int argc, char* argv[])
 {
 int qn = 1;
 int npts;
 double gamB1, time, fact;
 ask_Gpulse(argc, argv, qn,

npts, gamB1, time, fact, 1);
 row_vector G = Gvect(gamB1,npts,fact);
 cout << “\n\n”;
 GP_1D(“Gauss.gnu”, G);
 ofstream gnuload(“gnu.dat”);
 gnuload << “set data style line\n”;
 gnuload << “set xlabel \”time(sec)\”\n”;
 gnuload << “set ylabel \”gamB1(Hz)\”\n”;
 gnuload << “set title\”Gaussian Pulse Sh
 gnuload << “plot \”Gauss.gnu\”\n”;
 gnuload << “pause -1 \’<Return> To Exit
 gnuload << “exit\n”;
 gnuload.close();
 system(“gnuplot \”gnu.dat\”\n”);
 String syn;
 cout << “\n\n\tFrameMaker Hardcopy[y/n
 cin >> syn;
 if(syn == “y”)
 FM_1D(“Gauss.mif”, G, 1);
 cout << “\n\n”;
 }

GAMMA Gaussian Pulses 79
Gaussian Pulse Programs 4.4

May 8, 1998

le tau, int N, double fact=0.05)

gth (Hz)
 length (sec)
sian steps

 rotation angle

// Make sure fact is between
// [0,1]
// Incremental time
// Denominator
// Log of the cutoff factor
// Exponential factor
// Normalized Gaussian intensity

// Vector of Gaussian points

// Loop over Gaussian steps

//Use symmetry to avoid
//recalculating same pts

// Index so Gaussian mid-pulse
// Normalize Gauss. amplitude
// RF amplutude modulation

// Time in pulse
// Loop over Gaussian steps

); // For horizontals in hist.
); // For verticals in hist.

// First vertical in hist.
// Gaussian intensity
// Store the previous intensity
// Store the previous point
Scott Smith

Ghistplot.cc

Histogram Plots of Gaussian Pulse Waveforms

/* Ghistplot.cc **-*-c++-*-
** **
** This program plots the rf-field amplitude versus time for a **
** given a Gaussian pulse as specified by four parameters: **
** **
** 1.) The field strength at maximum **
** 2.) The intensity cutoff (%) at the pulse endpoints **
** 3.) The number of steps to take for the pulse **
** 4.) The time over which the pulse is active **
** **
** A gaussian function centered about time t is given formally by **
** o **
** **
** [2 / 2] **
** G(t) = exp | -(t-t) / (2*sigma) | **
** [0 /] **
** **
** The discrete function is similar except we would like to define **
** sigma in terms of a cutoff. That is to say, we should like to set **
** the Gaussian linewidth such that the first and last points are at **
** a set percentage (of maximum == 1). **
** **
** For a cutoff of X%, we need to satisfy the following conditions **
** **
** 2
2 **
** 0.0X = exp(-N / 8*sigma) **
** **
** or **
** sigma = N / sqrt[-8*ln(0.0X)] **
** **
** where N is the number of Gaussian steps taken and N/2 is the peak **
** maximum. Setting the peak maximum to be related to an rf-field **
** strength, this leaves us with the formula **
** **
** [2 2] **
** G(i) = exp | (2i-N) ln(0.0X)/ N | **
** [] **
** **
** Author: S.A. Smith **
** Date: May 2 1995 **
** Last Update: May 2 1995 **
** **
** */

#include <gamma.h> // Include all of GAMMA

 row_vector Gshape(double gamB1, doub

 // Input gamB : The rf-field stren
 // tau : Gaussian pulse
 // N : Number of Gaus

// fact : Cutoff factor
 // Output angle: Gaussian pulse

// on resonance

 {
 if(fact>1.0 || fact<0.000001)
 fact = 0.000001;
 double tdiv = tau/double(N);
 double den = double((N-1)*(N-1));
 double logf = log(fact);
 double Z = logf/den;
 double Gnorm;
 double num;
 int M = N+1;
 if(N > 100) M=0;
 row_vector Gshape(2*N+M);
 double lastv, lastt;
 int I = 0;

 double Gs[N];
 for(int i=0; i<N; i++)
 {
 if(N-1-i < i)
 Gs[i] = Gs[N-1-i];
 else
 {
 num = double(2*i)-double(N-1);
 Gnorm = exp(Z*num*num);
 Gs[i] = gamB1*Gnorm;
 }
 }

 double time = 0.0;
 for(i=0; i<N; i++)
 {
 if(i)
 {
 Gshape.put(complex(time,Gs[i-1]),I++
 if(M) Gshape.put(complex(time,0),I++
 }
 else if(M)
 Gshape.put(complex(time,0),I++);
 Gshape.put(complex(time,Gs[i]),I++);
 lastv = Gs[i];
 lastt = double(i);

GAMMA Gaussian Pulses 80
Gaussian Pulse Programs 4.4

May 8, 1998
Scott Smith

 if(i==N-1) // For the last point
 {
 time += tdiv;
 Gshape.put(complex(time,Gs[i]),I++); // For last horizontal in hist.
 if(M) Gshape.put(complex(time,0),I++); // For last vertical in hist.
 }
 time += tdiv;
 } // (evolve/acq step goes here)
 return Gshape;
 }

main(int argc, char* argv[])
 {
 int qn = 1; // Query number
 int npts; // Number of points
 query_parameter(argc, argv, qn++, // Get number of steps(pts)
 “\n\tNumber of Points in Gaussian? “, npts);
 if(npts < 2) npts = 2048;
 double gamB1;
 query_parameter(argc, argv, qn++, // Get rf-field strength
 “\n\tRF-Field Stength (Hz)? “, gamB1);
 double time;
 query_parameter(argc, argv, qn++, // Get pulse length
 “\n\tGaussian Pulse Length (sec)? “, time);
 double fact;
 query_parameter(argc, argv, qn++, // Get system file name
 “\n\tPercent Intensity at Ends [0, 1]? “, fact);
 cout << “\n\n”; // Keep the screen nice
 row_vector G = Gshape(gamB1,time,npts,fact);
 GP_xy(“Gauss.gnu”, G); // Output rf lineshape gnuplot
 ofstream gnuload(“gnu.dat”); // File of gnuplot commands
 gnuload << “set data style line\n”; // Set 1D plots to use lines
 gnuload << “plot \”Gauss.gnu\”\n”; // Plot IxA in gnuplot
 gnuload << “pause -1 \’<Return> To Exit \n”; // Plot IxA in gnuplot
 gnuload << “exit\n”; // Plot IxA in gnuplot
 gnuload.close(); // Close gnuplot command file
 system(“gnuplot \”gnu.dat\”\n”); // Plot to screen
 cout << “\n\n”; // Keep the screen nice
 }

	Gprofile2.cc
	Gpulse0.cc
	GlutamicA.sys
	GlutamicA2.sys

	Gpulse1.cc
	Gpulcorr2.cc
	Gpulpcorr2.cc
	Gplot.cc
	Generate Plots of Gaussian Pulse Waveforms

	Ghistplot.cc
	Histogram Plots of Gaussian Pulse Waveforms

	4 Gaussian Pulses
	4.1 Gaussian Pulse Sections
	4.2 Gaussian Pulse Functions
	4.3 Gaussian Pulse Figures & Tables
	4.4 Gaussian Pulse Programs
	4.5 Gaussian Pulse Propagators
	4.5.1 Gaussian
	Usage:
	Description:
	1. Acquire1D() - Creates an “empty” NULL acquire1D. Can be later filled by an assignment.
	2. Acquire1D(gen_op &Op, gen_op &H, double dt) - Called with the operator for which the expectati...
	3. Acquire1D(gen_op &Op, super_op &L, double dt) - Called with the operator for which the expecta...
	4. Acquire1D(const Acquire1D &ACQ1) - Called with another acquire1D quantity this function constr...

	Return Value:
	Examples:
	See Also: =
	4.5.2 =

	Usage:
	Description:
	Return Value:
	Examples:
	See Also: acquire1D
	4.5.3 Gpulse_Hs

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	4.5.4 Gpulse_Us

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	4.5.5 Gpulse_U

	Usage:
	Description:
	Return Value:
	Example:
	See Also:

	4.6 Auxiliary Functions
	4.6.1 Gangle
	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	4.6.2 GgamB1

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	4.6.3 Gtime

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	4.6.4 GNvect

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	4.6.5 Gvect

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	4.6.6 GIntvec

	Usage:
	Description:
	Return Value:
	Example:
	See Also:

	4.7 Input/Output Functions
	4.7.1 Ghistogram
	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	4.7.2 ask_Gpulse

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	4.7.3 read_Gpulse

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	4.7.4 <<

	Usage:
	Description:
	Return Value:
	Example(s):
	See Also:

	4.8 Auxiliary Functions
	4.8.1 size
	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	4.8.2 size

	Usage:
	Description:
	Return Value:
	Example:
	See Also:

	4.9 Description
	4.9.1 Introduction
	4.9.2 Analog Mathematical Basis
	(19-1)
	. (19-2)

	Analog Gaussian Plot
	Figure 19-3 A Gaussian function depicting the peak maximum at and the linewidth at half- height. ...
	(19-3)
	(19-4)

	4.9.3 Discrete Mathematical Basis
	(19-5)
	(19-6)
	(19-7)
	Analog vs. Discrete Gaussian Plot
	(19-8)
	(19-9)
	(19-10)
	(19-11)
	(19-12)

	Discrete Gaussian Plot
	Figure 19-4 A discrete Gaussian function depicting the peak maximum at . In this case the “linewi...

	4.9.4 Discrete Pulse Mathematics
	Gaussian Pulse Parameters
	Gaussian Pulse Shape
	Figure 19-5 A Gaussian pulse wave form. The rf-field strength (gamB1) is discretely changed over ...

	Gaussian Pulse Symmetry
	(19-13)
	(19-14)
	(20)
	(21)
	(22)

	Gaussian Pulse Summary

	4.9.5 Gaussian Pulses, No Relaxation
	(22-1)
	(22-2)
	(22-3)
	(22-4)
	(22-5)
	(22-6)
	(22-7)

	4.9.6 Gaussian Pulses, With Relaxation
	(22-8)
	(22-9)
	(22-10)
	(22-11)

	4.9.7 Gaussian Pulse Equations
	Gaussian Shaped Pulse Equations
	

	4.9.8 Final Notes
	(23)

	4.10 Gaussian Pulse Parameters
	4.10.1 Introduction
	4.10.2 Gaussian Pulse Parameters
	Four Gaussian Pulse Parameters
	Figure 19-6 A Gaussian pulse wave form. The rf-field strength (gamB1) is discretely changed over ...
	4.10.3 Defining a Gaussian Pulse Directly
	4.10.4 Defining a Gaussian Interactively
	4.10.5 Defining a Gaussian Pulse in an External File
	Name (type) : value - optional comment
	Table 1: Gaussian Pulse Parameters
	4.10.6 Constructing a Gaussian Pulse Propagator
	4.10.7 Example: Gaussian Pulse Profile

	Single Spin Gaussian Pulse Profile
	Figure 19-7 The plots were produced from successive runs of the program Gprofile2.cc on page 71. ...
	4.10.8 Example: Gaussian 90 Pulse

	Gaussian 90 Pulse Response
	Figure 19-8 The plots were produced from successive runs of the program Gpulse0.cc on page 72. In...

	4.10.9 Example: Gaussian 270 Pulse
	Gaussian 270 Pulse Response
	Figure 19-9 The plots were produced from successive runs of the program Gpulse1.cc on page 74. In...

	4.11 Example: Gaussian Pulse, Profile Corrected
	Gaussian 270 Pulse Response, Profile Phase Corrected
	Figure 19-10 Plots produced from successive runs of Gpulcorr2.cc on page 75. The program was give...

	4.12 Example: Gaussian Pulse, Linear Phase Correction
	Gaussian 90 Pulse Response, Standard Phase Correction
	Figure 19-11 Plots produced from successive runs of Gpulpcorr2.cc on page 77. The program was giv...

